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a b s t r a c t

This paper proposes a new method for 3D finite strain analysis. This method utilizes a Mohr circle
construction combined with stereographic projection of the geometry of no finite longitudinal strain and
with the strain ratio on the XZ-plane of the finite strain ellipsoid. The method is described using
numerical examples and then it is tested by applying it to the deformed Deh Vazir conglomerate in the
southwestern part of the Sanandaj-Sirjan HP-LT metamorphic belt, within the Zagros orogenic belt in
Iran. The results of this method compare well with previous finite strain measurements using strain
ratios on three principal planes of finite strain. Calculation of finite strain from strain ratios on the XY and
YZ principal planes is advantageous when preparation of 3 perpendicular sections is difficult or
impossible.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Measurements of finite strain and determination of the strain
ellipsoid in naturally deformed rocks are important tasks for many
structural geologists. The key to strain analysis lies in finding objects
with known initial packing arrangement or features which enable
final lengths or angles to be calculated. Following the classic paper of
Cloos (1947), a diversityofmethodologieshas beenproposed inorder
to estimatefinite strain in deformed rocks. The Rf/Fmethod (Ramsay,
1967;Dunnet,1969) andFrymethod (Fry,1979) are themost common
methods that have been used by structural geologists; they use the
shape (Rf/F method) and distribution (Fry method) of objects (e.g.
deformed ooids, pebbles of deformed conglomerate and deformed
fossils) or of points (e.g. quartz grain centers in quartzite). Two
dimensional finite strain can be completely described by three
numbers which represent the orientations and magnitudes of the
strain ellipse. Strain magnitude can be expressed as two principal
stretch values, or a strain ratio and area change. For a full description
of homogeneous 3D finite strain, six numbers are needed: three to
describe the orientation of the strain ellipsoid, and three to describe
strain magnitude. Strain magnitude can be expressed by the three
principal stretch values, or by two strain ratios and volume change.
Ramsay and Huber (1983, p.198) suggested four approaches that can
: þ98 711 22844572.
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be used to determine the 3D geometry of the strain ellipsoid from 2D
strain ellipse data, among which the approach using two strain
ellipses parallel to the principal planes is the most practical. This
paper proposes a newmethod combining stereographic projection of
orientations of no finite longitudinal strain together with the prin-
cipal strain ratio on the XZ-plane and using a Mohr circle construc-
tion; the method allows one to determine RXY, RYZ (strain ratio in the
XYand YZprincipal planes of the strain ellipsoid) and the geometry of
the 3D strain ellipsoid. This method is applied to a deformed
conglomerate to show how the finite strain varies on a variety of
scales across a deformed area.

2. Geometry of no finite longitudinal strain

There are fivemain types of strain ellipsoidwhich can result from
homogeneous deformation with no volume change (Flinn, 1962).
Within the strain ellipsoid, lineswhosedeformed lengths are equal to
their undeformed lengths are defined as lines of nofinite longitudinal
strain (n.f.l.s) (Ramsay, 1967). Orientations of all lines of no finite
longitudinal strain define a surface separating sectors of positive and
negative longitudinal strainwithin the ellipsoid. Except for the plane
strain state where the strain ellipsoid shape (k) ¼ 1 which produces
two circular sections, this surface is a double cone (on a circular or
elliptical base)with common apices at the center of the ellipsoid. The
shape of these conical surfaces can be completely described by the
anglesmade by their lines of intersection on the principal planes and
one of the principal strain axes (VXY,VXZ,VYZ) (Fig. 1a). The values of
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Fig. 1. (a) Geometry of surfaces (k s 1) and plane (k ¼ 1) of no finite longitudinal strain (n.f.l.s) in the five main types of the strain ellipsoid (Ramsay, 1967). (b) Half the maximum
and minimum angular dimensions of either the extension field or shortening field are measured on a stereographic projection.
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these angles depend upon the principal extensions. Half the
maximum andminimumangular dimensions of either the extension
field or shortening field are measured on a stereographic projection
(Fig. 1b). For an oblate ellipsoid, these are measured from X in the
XZ-plane (VXZ) and from Y in the YZ-plane (VYZ) so thatVXZ is always
greater thanVYZ, unless the oblate ellipsoid is uniaxial (k¼ 1), when
VXZ ¼ VYZ. For a prolate ellipsoid, the angular dimensions of the
extension field are measured from X in the XZ-plane and designated
VXZ, and from X in the XY-plane and designatedVXY. These angles are
equal for a uniaxial prolate ellipsoid, whereasVXY>VXZ for a triaxial
prolate ellipsoid. The surface of no finite longitudinal strain is
dependent onvolume change; the two limits occurwhen the original
sphere either lies completely outside or completely within the strain
ellipsoid. Combining a study of deformed structures which have
suffered elongation or compression (such as foliation, stretching
lineation, boudins and folds) with stereographic analysis of the
extensionand compressiondirectionswill enableus todetermine the
pattern of no finite longitudinal strain. Comparing results of stereo-
graphic analysis with the no finite longitudinal strain pattern on
a Flinn diagram (Flinn, 1962; Ramsay and Huber, 1983) provides
a qualitative test for determining the homogeneity of strain. If the
compression and extension domains are separated by irregular
boundaries, the strain has been inhomogeneous. In such cases it is
often possible to use data from smaller or larger domains to establish
empirically the scale of any domains of homogeneous strain. Large
bodies of inhomogeneously strained rock may be divided into volu-
metric units which are small enough to be considered to have
deformed homogeneously (Talbot, 1970; Twiss and Moores, 1992).
Similarly small domains of homogeneous strains may integrate
within larger domains of homogeneous strains (Talbot, 1987; Talbot
and Sokoutis, 1995).
2.1. The Mohr diagram for strain

Nadai (1950) first applied a Mohr circle to represent strain.
Nadai recognized that a graph of l0 (reciprocal quadratic elonga-
tion) vs g0 (g0 ¼ g/l or shear strain/quadratic elongation), in terms
of angles in the strain state, is identical in formwith theMohr stress
diagram: the three principal planes of the strain ellipsoid are rep-
resented by three Mohr circles. The strain state for any other
direction falls in the region bounded by the three circles. It was
probably Brace (1961) who first used the expression “Mohr
diagram” in the geological literature for the representation of
three-dimensional finite strain. Ramsay (1967) expanded the usage
of the Mohr diagram for strain in two ways. First, he illustrated the
potential of Mohr circles for representing strain data. Second, he
illustrated how the diagram for three-dimensional reciprocal strain
could be used to calculate strain values. For five ellipsoid examples,
Ramsay (1967) derived strain contours which were plotted on
stereographic projections. In practice, it is more convenient to
represent three-dimensional strain on a half Mohr diagram with
three semicircles, thus representing the values, but not the sign, of
g0. Usually determination of the strain ellipsoid shape is possible by
using the popular K factor (Flinn, 1962), where:

K ¼
h
ðl1=l2Þ1=2�1

i.h
ðl2=l3Þ1=2�1

i

K ¼ 1 (plane strain ellipsoid, type 3); K ¼ 0 (uniaxial oblate
ellipsoid, type 1); K ¼ N (uniaxial prolate ellipsoid, type 5);
0 < K < 1 (three axial oblate ellipsoid, type 2) and 1 < K <N (three
axial prolate ellipsoid, type 4). The Mohr diagrams are also a useful
means of illustrating and classifying strain ellipsoids of different
types. The relationship of the jmax (maximum shear angle)
tangents to the three circles allows ellipsoids to be assigned to one
of Ramsay’s five equal volume ellipsoid types (Fig. 2). The plane
strain ellipsoids are immediately distinguishable with their l01 l02
and l02 l03 circles which share the same jmax line (Fig. 2c). The two
end-member ellipsoids, uniaxial prolate (K ¼ N) and uniaxial
oblate (K ¼ 0), are represented on the Mohr diagram by a single
circle (Fig. 2a and e). In each case, one principal circle reduces to
a point and the jmax is only defined in the XZ principal plane of the
strain ellipsoid. In the three axial oblate and prolate ellipsoids there
are different jmax for all principal planes of the strain ellipsoid
(Fig. 2b and d).
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Fig. 2. The relationship of the jmax tangents to the three principal circles allows strain
ellipsoids to be assigned to one of Ramsay’s five equal volume ellipsoid types.

Table 1
Numerical data for three cases showing the strain ratio in the XZ-plane of the strain
ellipsoid and VXY, VXZ, VYZ angles. Incomplete data are assumed: in each case it is
assumed that one of the angles, FXY, FXZ and FYZ, is missing.

RXZ VXZ VXY VYZ

Case 1 2 35 e 20
Case 2 2 30 40 e

Case 3 2 40 90 e
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2.2. Numeric example

Let us suppose that the data in Table 1 show the strain ratio in the
XZ-plane of the strain ellipsoid and theV angles obtained from strain
analysis and structural studies in three geological settings. It is
possible todetermine thestrain ratio in theother twoprincipalplanes
(RXYand RYZ) by using a Mohr circle construction. The data of Table 1
were used to calculate the strain ratio in the XY- and YZ-planes for
states 1 to 3, respectively. In the first case the values ofV indicate an
oblate geometry for the strain ellipsoid. Tomeasure the strain ratio in
the other two principal planes based one a Mohr circle construction,
the following steps are used. Draw perpendicular axes cl0 and cg0,
where c is a constant of unknownvalue (Fig. 3a). For strain analysis of
naturallydeformedrocks,because it is rare toknowtheoriginal sizeof
the strainmarkers, we can only determine the relative strain ratios of
theprincipalplanesoffinite strainellipsoidbutnot theabsolute strain
ratios (Twiss and Moores, 1992). So we can use an arbitrary scale or
unit for the quadratic elongation (l0) axis, as proposed by Ramsay
(1967). By determining the position of l0 ¼ 1 on the l0 horizontal
axiswe can obtain a numerical scale for determination of other strain
parameters. Construct a Mohr circle with center C and radius RXZ/2.
The two points where this circle cuts the l0-axis represent the two
principal axes of the strain ellipsoid. At l03 construct a linemaking an
angle VXZ ¼ 35� (Table 1) with the l0-axis. This line cuts the Mohr
circle at the point m. Drop a perpendicular from m onto the l0-axis,
intersecting it at n. This line shows the locus of no finite longitudinal
strain (n.f.l.s) andcuts the l0-axis atl0 ¼1. For theplanestrainellipsoid
(k¼ 1), the n.f,l.s. locus is a circular section. In all other cases (ks 1),
the two loci do not coincide and the locus of n.l.f.s. represents
a surface, not a plane. Then at l03 construct a line making an angle
VYZ ¼ 20� with the l0-axis so it cuts the mn line (Fig. 3aec) at o. The
intersection of these lines is located in the YZ principal plane of the
strain ellipsoid. Because l03 and o lie on the circumference of l02 l03
principal plane, the line ol03 is a chord of that circle, and its perpen-
dicularbisector intersects the l0-axis at thecenterof the l02 l03 circle in
Mohr space. The XY principal plane can be easily determined by
constructing a circle with a radius of l01l02/2. The magnitude of the
principal quadratic elongations l01, l02 and l03 can be found by scaling
off the distance from the origin; hence:

l01 ¼ cl01
cn

l02 ¼ cl02
cn

l03 ¼ cl03
cn

The second case in Table 1 is for a prolate strain ellipsoid.
Construct the Mohr circle with center C and radius RXZ/2 (Fig. 3b).
From the minimum principal quadratic elongation (l03) construct
a linemaking an angleVXZ¼ 30� with the l0-axis. As in the previous
case, this line cuts the Mohr circle at m. Drop a perpendicular from
m onto the l0-axis, intersecting it at n. The linemn cuts the l0-axis at
l0 ¼ 1. Construct an angle 90-VXY from l01 so that it cuts the line of
n.f.l.s (or mn) at o. Because it is not possible to find the position of
l02 on the l0-axis, it is necessary to use the 90-VXY angle for con-
structing l01 l02 on the circle. The line ol01 is a chord of the l01 l02
circle and its perpendicular bisector intersects the l0-axis at the
center of the l01 l02 circle (q). With this center (q) and the radius
ql01, one can draw the l01 l02 circle. Then applying the above
equations, it is possible to determine the strain ratios in the XZ, XY
and YZ principal planes.

The third case (Table 1) is for a strain ellipsoid with plane strain
geometry. All states in this case are the same as that described for
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Fig. 3. Measuring the strain ratio in RXY and RYZ principal planes based on Mohr circle
construction with application of the geometry of n.f.l.s and the RXZ strain ratio for
general flattening (a), general constriction (b) and plane strain (c).
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constrictional strain and use the 90-VXY angle for constructing the
l01 l02 circle (Fig. 3c). In the cases of uniaxial flattening and
constriction, the angle VYZ ¼ VXZ and VXY ¼ VXZ and because
l02 ¼ l01 and l03 ¼ l02, calculating the strain ratios in the XY- and YZ-
planes can be done based on the strain ratio in XZ-plane.

3. Practical applications: regional geological background

Deformed conglomerate and metamorphic rocks of the Deh Vazir
area in southwestern Iran (Fig. 4a and b) form part of the Sanandaj-
Sirjan metamorphic zone (Stöcklin, 1968), within the Zagros orogenic
belt of Iran. The Zagros belt, as part of the Himalayanmountain chain,
extends for about 2000 km in a NWeSE direction from the East
Anatolian fault of Eastern Turkey to the Oman line in southern Iran
(Alavi, 1994). The Zagros Orogen formed by continental collision
between theAfro-Arabiancontinent and the Iranianmicrocontinent in
Late Cretaceous to Tertiary time (Berberian and King, 1981). The
orogenic belt is the result of closure of Neo-Tethys by consumption of
oceanic crust at a NE-dipping subduction zone below the Iranian
microcontinent and subsequent Late Cretaceous continental collision
between the Afro-Arabian continent and Iranian microcontinent
(Ricou,1971; Takin,1972; Dewey et al., 1973; Stocklin,1968; Berberian
and King, 1981; Alavi, 1994; Blanc et al., 2003; McQuarrie, 2004;
Sarkarinejad et al., 2008; Sheikholeslami et al., 2008). The Zagros
orogenic belt from northeast to southwest consists of three NWeSE
trending parallel zones (Fig. 4a): (1) the UrumiehDokhtar Magmatic
Belt (UDMB). (2) the Sanandaj-Sirjan HP-LT/HT-LPMetamorphic Belts
(SSMB) and (3) the Zagros Fold-and-Thrust Belt (ZFTB). The Sanandaj-
Sirjan HP-LT is 150e200 kmwide and more than 1500 km long from
NW(Sanandaj) to SE (Sirjan) in thewesternpart of Iran (Fig. 4a). Based
on metamorphic grade, the Sanandaj-Sirjan zone is subdivided into
high-pressure/low temperature and high temperature/low pressure
paired metamorphic belt (Sarkarinejad, 1999). The tectonics of the
Sanandaj-Sirjan HP-LT metamorphic belt are characterized by
numerous thrusts, all transporting rock units from NE to SW in
piggyback style (Alavi, 1994).

The results 40Ar/39Ar step-heating measurements on biotite,
muscovite and amphibole in the Sanandaj-Sirjan HP-LT meta-
morphic belt are consistent with the overprinting relationship
determined from field observations (Sarkarinejad et al., 2009). The
first generation of biotite yields plateau ages of 119.95 � 0.88 and
112.58 � 0.66 Ma. These late Aptian ages are related to early
thrusting and the formation of high-pressure metamorphic rocks at
thepeakofmetamorphismprior toobductionof theNeyrizophiolite
(Sarkarinejad et al., 2009). The Deh Vazir deformed conglomerate is
sandwiched between thrust sheets which are part of the Zagros
Thrust System (Sarkarinejad and Azizi, 2008; Sarkarinejad et al.,
2010), which consists of eight sheets of NW-striking, NE-dipping
dextral strike-slip duplex structures that are linked with imbricate
fans and oblique slip thrusts (Sarkarinejad and Azizi, 2008).

The most abundant rocks in the study area are deformed
conglomerate and micro-conglomerate. The conglomerate pebbles
consist of quartzite, phyllite, mica schist; the thickness of this unit
varies between 2300 and 2500m. Thematrix around the pebbles is
composed of muscovite, quartz, and feldspar. The similarity of
composition between pebbles and matrix indicates low rheological
contrast between them (Sarkarinejad et al., 2010). The meta-
morphic grade in this conglomerate is greenschist facies conditions
(Sarkarinejad, 1999, 2007).

3.1. Meso- and micro-scale structures

The Deh Vazir conglomerate is strongly foliated and lineated
(Fig. 5). The foliation is defined by alignment of pebbles flattened in
the XY-plane. The orientation of the foliation varies between
N80�W, 30�NE and N30�W, 70�NE. The stretching lineation within
the foliation has a plunge and trend varying from 10�, N60�W to
30�, N20�W. Stair-stepping structures, mantled s-type porphyr-
oclast systems with sigmoidal structures, asymmetrical rotated
domino boudins, asymmetrical tapering boudins and asymmetrical
complex rotated domino and tapering boudins all indicate a top-to-
the-SE sense of shear (Fig. 6).

3.2. Structural observations and finite strain analysis

Detailed structural observations and sampling for strain analysis
were carried out along a narrow (1 km) section across the thrust
faults (Fig. 4). Five structural domains (D1 to D5) with different
structural characteristics are defined based on distance from thrust
faults (Fig. 7). In each domain an oriented sample was taken for
strain analysis and more than 60 foliation and stretching lineation
measurements were made for stereographic studies. In strain
studies the evidence for volume change is commonly equivocal
(Simpson, 1981; Mohanty and Ramsay, 1994), but in some cases,
volume change can be discounted (Srivastava et al., 1995;



Fig. 4. Geological map of the study area.

Fig. 5. Preferred orientation of pebble long axes in the Deh Vazir deformed conglomerate. Size of the markers on the left and center of the photos (a and b) is 14 cm. The orientation
of the long axes of the pebbles is 10� , N60�W (The photos have been taken looking at inclined faces approximately parallel to the XZ-plane of the finite strain ellipsoid).

K. Sarkarinejad et al. / Journal of Structural Geology 33 (2011) 424e432428



Fig. 6. Shear sense indicators in the study area. (a, b and c) Photomicrographs showing dextral shear of quartz and feldspar s-type porphyroclast systems. The matrix consists of
muscovite, quartz and feldspar. (d) Dextral asymmetrical rotated domino boudins. (e) Asymmetrical tapering boudins. (f) Asymmetrical complex domino and tapering boudins.
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Bhattacharyya and Huddleston, 2001). Volume change during
deformation can affect the shape of the finite strain ellipsoid
(Ramsay andWood, 1973). In the Deh Vazir deformed area, the lack
of prominent veining implies that volume change was small
(Sarkarinejad et al., 2010). In the quartzite pebbles, crystal-plastic
deformation was dominant as indicated by subgrain-rotation
recrystallization microstructures (Sarkarinejad and Azizi, 2008)
and there is little or no microstructural evidence for solution
Fig. 7. Five structural domains (D1 to D5), sample locations and distribution of foliation and l
software.
transfer, also indicating approximately constant volume deforma-
tion. Previous strain studies in this area (Sarkarinejad, 2007;
Sarkarinejad and Azizi, 2008) on the deformed conglomerates
and micro fossils of the Sanandaj-Sirjan HP-LT metamorphic belt
approximately show the plane strain geometry of finite strain
ellipsoid (K z 0.85) with only small volume changes. Quartz c-axis
fabrics are type-I crossed-girdle patterns, which indicate approxi-
mately plane strain (K ¼ 1) conditions (Sarkarinejad and Azizi,
ineation on lower hemisphere equal area stereographic projections using SpheriStat 2.2



Fig. 8. Rf/F diagrams in the XZ-plane for B1 to B5 samples.
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2008; Sarkarinejad et al., 2010). Therefore throughout this analysis,
we have assumed constant volume deformation.

As mentioned by Xypolias (2009), the kinematic vorticity
parameter (Wm) plays an important role in determining the orien-
tation of the principal axes of the finite strain ellipsoid with respect
to the instantaneous stretching axes (ISA). Kinematic vorticity is
a dimensionless measure of rotation relative to strain and
Fig. 9. Lower hemisphere, equal area projection of the n.f.l.s geometry (VXY and VXZ) base
plotted using SpheriStat 2.2 software).
characterizes theamountof shortening relative todisplacement.Wm

was originally defined as an instantaneous rotation relative to the
instantaneous stretching at a point (Truesdell, 1953; Means et al.,
1980). Most of the vorticity methods utilize data collected on the
XZ-planeoffinite strain (parallel to lineationandnormal to foliation)
and commonly assume steady-state deformation with the vorticity
vector approximately parallel to the Y-axis of the strain ellipsoid.
d on foliation and stretching lineation structural elements (The stereonets have been



Table 2
Strain ratios on the XY and YZ principal planes of the strain ellipsoid.

RXZ VXZ VXY RXY RYZ

D1 4.4 20� 42� 4.2 3.5
D2 3.5 36� 45� 3.3 2.9
D3 2.8 38� 42� 2.8 2.6
D4 3.2 25� 38� 2.7 2.4
D5 4.0 26� 38� 2.8 2.5

a

b

c

Fig. 10. (a and b) Variation of finite strain parameters (RXZ and 3) plotted against
sample locations from the thrust planes. (c) Ellipsoid shape analyzed by plotting the
finite strains for XY and YZ principal sections on a Ramsay diagram.
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For cases of simple shear and sub-simple shear,Wm is measured
on a scale between 0 and 1, with 0 being pure shear and 1 being
simple shear. The Wm scale is not linear, but can be converted to
a linear scale by considering the percent of a deformation resulting
from simple shear and pure shear. Fort and Bailey (2007) propose
three separate fields for pure, general, and simple shear dominated
deformations. Pure shear dominated deformations haveWm-values
of 0e0.3, corresponding to less than 20% simple shear. In contrast,
simple shear dominated deformations have Wm-values of greater
than 0.95, corresponding to greater than 80% simple shear. General
shear occupies the range between 0.3 and 0.95.

Wm is an important factor indicating fit or discord of principal
axes of the finite strain ellipsoid and the instantaneous stretching
axes of deformation. In pure shear dominated deformation, the
maximum and minimum instantaneous stretching axes (ISA1 and
ISA2) approximately coincide with the short and long axes of the
finite strain ellipse (Passchier and Trouw, 2005; Xypolias, 2009) and
the deformation is mainly coaxial. In this case the pole of foliation
and orientation the stretching lineation show the directions of
shortening and extension, respectively. Kinematic vorticity analysis
of the Deh Vazir deformed area revealed a prominent pure shear
component of deformation (Sarkarinejad et al., 2010; Samani,
2010). So in this study we assumed that the shortening and
extension directions approximately coincide with the pole to foli-
ation and the stretching lineation, respectively. Moreover in this
framework we can use other structures such as fold axial planes
and boudin necks for separation of shortening and extension
domains (Talbot, 1970).

Strain analysis was performed on a representative sample from
the deformed conglomerate in each of the 5 domains (D1 to D5);
sample localities are shown on Fig. 7. All samples were collected
from conglomerate layers containing low competency contrast
between pebbles and matrix and well defined planar and linear
fabric elements. The pebble shape was used as the strain marker.
Length-to-width ratios of pebbles were determined from
measurements made on sections cut normal to the foliation and
parallel to the lineation.

The study relies on the following assumptions: (1) the foliation
plane coincides with the XY-plane of the strain ellipsoid, (2) the
stretching lineation defines the long axis of the strain ellipsoid, (3)
the strike of the main thrust faults defines the direction of the shear
zone boundaries and f is the angle between the X-axis of the
elliptical strain marker and the reference line of the shear zone
boundary trace and (4) the deformation was isochoric (constant
volume). The strain ratios (RXZ) were estimated for each sample
applying the Rf/F method (Ramsay, 1967; Lisle, 1985) (Fig. 8). In
order to determine the 3D geometry of the finite strain ellipsoid,
the above described method was used to estimate the tectonic
strain ratios in the XY and YZ principal planes. By applying stereo-
graphic analysis of the stretching lineation and foliation, we
determined the geometry of the surfaces of n.l.f.s. More than 60
orientations of foliation and stretching lineation were measured at
each sample location in the D1 to D5 domains. For each domain the
distributions of orientations were plotted on lower hemisphere,
equal area stereographic projections (Fig. 7). The orientations of
n.l.f.s. were determined. Their geometry can be completely
described by the angles made by their lines of intersection on the
principal planes and one of the principal strain axes (angles VXY,
VXZ, VYZ) (Fig. 9). Finally by using the geometry of n.l.f.s. (angles
VXY, VXZ, VYZ) and the tectonic strain ratio on the XZ-plane and by
applying the method described above, the strain ratios on the XY-
and YZ-planes were calculated (Table 2). These three values of
strain (for the XZ-, XY- and YZ-planes) have been used to evaluate
the finite natural logarithmic strain (Ramsay and Huber, 1983):

3 ¼
�
1
3

�1=2h
ðlnðRXZÞÞ2þðlnðRYZÞÞ2þðlnðRXY ÞÞ2

i1=2

In order to investigate the finite strain variation across the shear
zones, finite strain parameters (RXZ and 3) were plotted against
sample locations from the thrust planes (Fig. 10a and b); for each
distribution, curves of mean values have been plotted. The ellipsoid
shape was analyzed by plotting the finite strain for the XY- and YZ-
planes on a Ramsay diagram (Fig. 10c).
4. Discussion

The shear zones associated with the Zagros thrust system
(Sarkarinejad and Azizi, 2008) are characterized by a top-to-the-
SW sense of shear and lengthening parallel to the shear direction.
This conclusion is based on two main lines of evidence: (1) the
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stretching lineation is roughly parallel to the shear direction as
obtained by independent field evidence (Fig. 6); and (2) the
stretching lineation trend is at a high angle with respect to the
general dip direction of the foliation (Fig. 9). XZ finite strain values
obtained from deformed pebbles, as well as the calculated natural
logarithmic strain (3), indicate that finite strain increases in an
approximately linear fashion toward the thrust faults (Fig. 10a and
b). Similar linear trends have been observed in other shear zones
(Talbot and Sokoutis, 1995). Vitale and Mazzoli (2008) discrimi-
nated mylonite types using strain intervals of 3 ¼ 0e1 (proto-
mylonites), 3 ¼ 1e2.5 (mylonite) and 3 > 2.5 (ultramylonite). Our
analyzed samples have strain values (1 < 3 < 1.4) corresponding to
mylonite. The Ramsay diagram (Fig. 10c) shows that most of the
object finite strain ellipsoids inferred from the deformed pebbles
fall into the prolate field, although they plot close to the plane strain
line. The finite strain ellipsoid distribution in the Ramsay diagram is
similar to that obtained for the region by applying RXZ, RXY and RYZ
strain ratios in planes cut parallel to the finite strain principal
planes (Sarkarinejad et al., 2010). Thus both previous methods and
the newly described method of finite strain determination give
approximately similar values for the study area.

5. Conclusion

3D strain analysis based on the geometry of the surface of no
finite longitudinal strain and the strain ratio measured on the
XZ-plane is a useful method for strain studies in deformed areas
with approximately homogeneous deformation. This method is
especially useful for situations when preparation of 3 perpendic-
ular cut sections is difficult or impossible.
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